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A Chebyshev pseudospectral method is generalized to solve the linear and non-
linear hydrodynamic stability problems of thermal convection in a two-dimensional
rectangular box with rigid sidewalls, where there may exist a heat source or a mag-
netic field to enhance or suppress the convection. The incompressibility condition is
imposed rigorously on all boundaries. The effects of box aspect ratio, heat source,
and magnetic field on the critical Rayleigh number and convection cell size are ex-
amined and compared with the results of other investigators. We have extended the
present technique to nonlinear stability analysis and derived the Landau equation
that describes the temporal evolution of the strength of convection in the rectangular
box with rigid sidewalls. The results of nonlinear stability analysis are compared
with the exact results obtained by the numerical solution of the Boussinesq equa-
tion. The present technique solves linear and nonlinear convective stability problems
accurately and can be employed to solve other hydrodynamic stability problems in
finite domains. c© 2001 Academic Press
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1. INTRODUCTION

The convective instability of Boussinesq fluids heated from below is one of the most
extensively studied problems of hydrodynamic stability because of its frequent occurrence
in various fields of science and engineering. A full account of the linearized theory is
given in Chandrasekhar [1] and Drazin and Reid [2]. This linear theory determines the
critical Rayleigh number and wavenumber but does not say anything about the magnitude
of the amplitude of the convection cell finally obtained. The answer to this question is
supplied by the nonlinear stability analysis based on perturbation techniques. The first
work in this direction was done by Malkus and Veronis [3] and generalized by Schl¨uter
et al.[4] and many others. All these analyses assume that the flow and temperature fields are
periodic in the horizontal directions and seek normal mode solutions so that the resulting
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governing equations for the hydrodynamic stability become one dimensional. But these
results are not comparable with experiments, since the necessary lateral confining walls
render the flow pattern much more complicated, making the size of convection cells in the
domain nonidentical. Davis [5] was the first investigator to consider a hydrodynamic stability
problem in a finite domain where the fluid is fully confined. He studied the influence of
nonslip lateral walls on the convective process in a rectangular box using a Galerkin method.
Later, Reddy and Voy´e [6] and van de Vooren and Dijkstra [7] employed a finite element
method to analyze linear convective instability in finite domains.

In the present investigation, we employ a Chebyshev pseudospectral method [8, 9] to
solve the linear and nonlinear Rayleigh–B´enard convection problems in a two-dimensional
box with rigid sidewalls. The Boussinesq equation is reformulated using the stream function
so that the incompressibility condition is imposed exactly. The resulting eigenvalue prob-
lem involves a biharmonic operator with two boundary conditions on each boundary, i.e.,
one Dirichlet condition and one Neumann condition. By judicious use of the Chebyshev
pseudospectral method, these two boundary conditions are imposed on each boundary di-
rectly without introducing an auxiliary function such as vorticity. The discretized governing
equation yields the eigenvalues and eigenvectors needed in the linear stability analysis. The
critical eigenvalue and eigenvector are further employed in the nonlinear stability analysis,
which is based on the power series method [4]. In contrast to the usual cases with periodic
boundary conditions in the horizontal direction, the present problem with rigid sidewalls
produces perturbation equations that cannot be solved analytically. We solve these pertur-
bation equations numerically using the Chebyshev pseudospectral method and obtain the
Landau equation after imposing the solvability condition. This technique is an extension of
the semianalytic method employed in the nonlinear hydrodynamic stability analysis for the
Rayleigh–Bénard convection of viscoelastic fluids with periodic boundary condition in the
horizontal direction [10, 11]. The present method is quite versatile and may be employed
to solve many other hydrodynamic stability problems in confined domains.

2. FORMULATION OF THE PROBLEM

We consider a Boussinesq fluid in a two-dimensional rectangular box whose bottom is
maintained at a higher temperature than the top. In addition, there may exist a heat source or a
magnetic field in the domain that enhances or suppresses the thermal convection (Fig. 1). We
use an asterisk to denote dimensional quantities and introduce the dimensionless variables
as

x = x∗

dx
, y = y∗

dy
, t = κt∗

d2
y

, v = dyv∗

κ
,

(2.1)

T = T∗ − T∗cold

T∗hot− T∗cold
, P′ = d2

y P∗

ρκ2
,

whereT∗ is the temperature,T∗cold is the temperature at the top boundary,T∗hot is the tem-
perature at the bottom boundary,t∗ is the time,v∗ is the velocity field,P∗ is the pressure
field, κ is the thermal diffusivity,ρ is the density,dx is the half width of the box, anddy is
the half depth of the box. If the fluid in the box is electrically conducting, its motion in the
presence of a magnetic field gives rise to a Lorentz force which acts on the fluid so that an
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FIG. 1. The system and boundary conditions.

extra body force term appears in the Navier–Stokes equation. For most liquid metals and
molten semiconductors, the magnetic Reynolds number, i.e., the ratio of magnetic induction
to magnetic diffusion, is so small that the Lorentz force is practically unaffected by the flow.
Further, assuming that the magnetic field is parallel to they-axis, the Lorentz force per unit
volume of fluid is given by−σeB2vx i, whereσe is the electric conductivity of the fluid,B
is the magnetic field, andvx is thex-component of the velocity vector [12]. Thus, the set of
governing equations in dimensionless variables are

∇ · v = 0 (2.2)

∂v
∂t
+ v · ∇v = −∇P + Pr∇2v+ RPrTj − PrHa2vx i (2.3)

∂T

∂t
+ v · ∇T = ∇2T + G(t)δn(x − x†)δn(y− y†), (2.4)

whereP is the modified pressure given by

P = P′ − (T∗cold− T∗sys)
d3

y

κ2
αgy (2.5)

andα is the thermal expansion coefficient. Here,T∗sys is the average temperature of the
system given by

T∗sys=
1

2
(T∗hot+ T∗cold). (2.6)



144 PARK AND RYU

The dimensionless groupR is the Rayleigh number,Pr is the Prandtl number, andHa is the
Hartmann number defined as

R= αg
(T∗hot− T∗cold)d

3
y

κν
(2.7)

Pr = ν

κ
(2.8)

Ha= |B| dy

(
σe

ρν

)1/2

, (2.9)

whereν is the kinematic viscosity. The dimensionless strength of heat source is denoted by
G(t), and the functionδn(x − x†), which approximates the point source atx = x† in the
domain, is defined by

δn(x − x†) = n

2 cosh2(n(x − x†))
(2.10)

and becomes the Dirac delta function asn approaches infinity. In the present investigation,
we taken = 20 with (x†, y†) = (0.25,−0.25). The relevant boundary conditions are

x = ±1; v = 0,
∂T

∂x
= 0 (2.11)

y = +1; v = 0, T = 0 (2.12)

y = −1; v = 0, T = 1. (2.13)

When the Rayleigh numberR is below critical, there is no fluid motion, and the basic
state or the conduction state that prevails in the system is

v = 0 (2.14)

T = 1− y

2
+ TG(x, y), (2.15)

whereTG satisfies the equation

∇2TG + Gδn(x − x†)δn(y− y†) = 0 (2.16)

and the boundary conditions

x = ±1; ∂TG

∂x
= 0 (2.17)

y = ±1; TG = 0. (2.18)

On putting

T(x, y, t) = 1− y

2
+ TG(x, y)+2(x, y, t), (2.19)
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it follows that

∇ · v = 0 (2.20)

∂v
∂t
+ v · ∇v = −∇P + Pr∇2v+ RPr2j − PrHa2vx i (2.21)

∂2

∂t
+ v · ∇2+ v · ∇TG − 1

2
vy = ∇22. (2.22)

The relevant boundary conditions are

x = ±1; v = 0,
∂2

∂x
= 0 (2.23)

y = ±1; v = 0, 2 = 0. (2.24)

In terms of the stream function9, the above set of equations and boundary conditions may
be rewritten as

∂

∂t
(∇29)+ J(∇29,9) = Pr∇49 − RPr

∂2

∂x
− PrHa2∂

29

∂y2
(2.25)

∂2

∂t
+ J(2,9) = ∇22+ ∂9

∂x

(
∂TG

∂y
− 1

2

)
− ∂9
∂y

∂TG

∂x
(2.26)

x = ±1; 9 = 0,
∂9

∂x
= 0,

∂2

∂x
= 0 (2.27)

y = ±1; 9 = 0,
∂9

∂y
= 0, 2 = 0, (2.28)

where the JacobianJ is defined as

J( f, g) =
∣∣∣∣∣∣
∂ f
∂x

∂ f
∂y

∂g
∂x

∂g
∂y

∣∣∣∣∣∣ . (2.29)

3. LINEAR STABILITY ANALYSIS

We assume the time dependence for the variables9 and2 as

9 = estφ(x, y) (3.1)

2 = estθ(x, y) (3.2)

and decide the stability of the system based on the signature ofs. For the linear stability
analysis, we substitute (3.1) and (3.2) into (2.25) and (2.26) and delete nonlinear terms to
find the eigenvalue problem

Ax = sBx, (3.3)

where the differential operatorsA andB are given by

A =
Pr∇4− PrHa2 ∂2

∂y2 −RPr ∂
∂x

J(·, TG)− 1
2
∂
∂x ∇2

 (3.4)
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B =
[∇2 0

0 1

]
, (3.5)

and the eigenfunctionx is defined as

x =
[
φ(x, y)

θ(x, y)

]
. (3.6)

The boundary conditions forφ andθ are the same as those for9 and2. The eigenvalue
problem (3.3) is discretized by the Chebyshev pseudospectral method [8, 9] after relevant
boundary conditions are implemented. Using the Chebyshev pseudospectral method, we
can approximate differentiations of a function by matrix multiplications. The collocation
points are selected as

xi = cos

[
π(i − 1)

N X

]
(1≤ i ≤ N X+ 1) (3.7)

yj = cos

[
π( j − 1)

NY

]
(1≤ j ≤ NY+ 1), (3.8)

whereN X and NY are the number of computational cells in thex- and they-direction,
respectively. Then the first, the second, and the fourth partial derivatives of a function
f (x, y), defined for−1≤ x ≤ 1 and−1≤ y ≤ 1, can be approximated by

∂q f

∂xq
(xi , yj ) =

N X+1∑
l=1

Ĝ X
(q)

i,l f (xl , yj ) (3.9)

∂q f

∂yq
(xi , yj ) =

NY+1∑
l=1

ĜY
(q)

j,l f (xi , yl ). (3.10)

Here the matriceŝGX
(q)

andĜY
(q)

are defined as

ĜX
(q) = TxGX(q)T̂x (3.11)

ĜY
(q) = TyGY(q)T̂y, (3.12)

where

Tx
j,k = cos

[
(k− 1)( j − 1)π

N X

]
(3.13)

T y
j,k = cos

[
(k− 1)( j − 1)π

NY

]
(3.14)

and

T̂ x
k, j =

2

N X

1

C̄kC̄ j
cos

[
(k− 1)( j − 1)π

N X

]
(3.15)

T̂ y
k, j =

2

NY

1

C̄kC̄ j
cos

[
(k− 1)( j − 1)π

NY

]
. (3.16)
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The matricesGX(q) andGY(q) are defined as

G X(1)i, j = GY(1)i, j =
{

0, if i ≥ j or i + j is even
2( j−1)

Ci
, otherwise.

(3.17)

Thus

GX(2) = GX(1) ·GX(1) (3.18)

and so forth. The coefficientsCi andC̄i are given as

C̄1 = 2, C̄n = 1 (2≤ n ≤ N X), C̄N X+1 = 2 (3.19)

C1 = 2, Cn = 1 (2≤ n ≤ N X+ 1). (3.20)

The discretization procedure for the differential operatorsA andB in (3.3) consists of
converting various differentiations into matrix multiplications using (3.9) and (3.10) and
removing boundary grid values and outermost internal grid values ofφ andθ in terms of
the remaining internal grid values by exploiting the boundary conditions. The boundary
grid values may be represented in terms of internal grid values as follows. The boundary
conditions

x = ±1; φ = 0 and
∂φ

∂x
= 0 (3.21)

yield

φ1, j = 0; φN X+1, j = 0 (1≤ j ≤ NY+ 1) (3.22)

N X+1∑
m=1

Ĝ X
(1)

1,mφm, j = 0;
N X+1∑
m=1

Ĝ X
(1)

N X+1,mφm, j = 0 (1≤ j ≤ NY+ 1). (3.23)

Solving (3.22) and (3.23) simultaneously, we can express the outermost internal grid values
in terms of the remaining internal grid values,

φ2, j =
N X−1∑
m=3

amφm, j ; φN X, j =
N X−1∑
m=3

bmφm, j (1≤ j ≤ NY+ 1), (3.24)

where

am ≡
Ĝ X

(1)

1,N XĜ X
(1)

N X+1,m − Ĝ X
(1)

N X+1,N XĜ X
(1)

1,m

Ĝ X
(1)

1,2Ĝ X
(1)

N X+1,N X − Ĝ X
(1)

1,N XĜ X
(1)

N X+1,2

(3.25)

bm ≡
Ĝ X

(1)

N X+1,2Ĝ X
(1)

1,m − Ĝ X
(1)

1,2Ĝ X
(1)

N X+1,m

Ĝ X
(1)

1,2Ĝ X
(1)

N X+1,N X − Ĝ X
(1)

1,N XĜ X
(1)

N X+1,2

. (3.26)
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Similarly, the boundary conditions

y = ±1; φ = 0 and
∂φ

∂y
= 0 (3.27)

yield

φi,1 = 0; φi,NY+1 = 0 (1≤ i ≤ N X+ 1) (3.28)

and

φi,2 =
NY−1∑
l=3

clφi,l ; φi,NY =
NY−1∑
l=3

dlφi,l (1≤ i ≤ N X+ 1), (3.29)

where

cl ≡
ĜY

(1)

1,NYĜY
(1)

NY+1,l − ĜY
(1)

NY+1,NYĜY
(1)

1,l

ĜY
(1)

1,2ĜY
(1)

NY+1,NY − ĜY
(1)

1,NYĜY
(1)

NY+1,2

(3.30)

dl ≡
ĜY

(1)

NY+1,2ĜY
(1)

1,l − ĜY
(1)

1,2ĜY
(1)

NY+1,l

ĜY
(1)

1,2ĜY
(1)

NY+1,NY − ĜY
(1)

1,NYĜY
(1)

NY+1,2

. (3.31)

In contrast toφ(x, y), θ(x, y) has only one boundary condition at each boundary:

x = ±1; ∂θ

∂x
= 0 (3.32)

y = ±1; θ = 0. (3.33)

Thus, we remove only the boundary grid values ofθ as follows:

θi,1 = 0; θi,NY+1 = 0 (1≤ i ≤ N X+ 1) (3.34)

θ1, j =
N X∑

m=2

aT
mθm, j ; θN X+1, j =

N X∑
m=2

bT
mθm, j (1≤ j ≤ NY+ 1), (3.35)

where

aT
m ≡

Ĝ X
(1)

1,N X+1Ĝ X
(1)

N X+1,m − Ĝ X
(1)

1,mĜ X
(1)

N X+1,N X+1

Ĝ X
(1)

1,1Ĝ X
(1)

N X+1,N X+1− Ĝ X
(1)

1,N X+1Ĝ X
(1)

N X+1,1

(3.36)

bT
m ≡

Ĝ X
(1)

1,mĜ X
(1)

N X+1,1− Ĝ X
(1)

1,1Ĝ X
(1)

N X+1,m

Ĝ X
(1)

1,1Ĝ X
(1)

N X+1,N X+1− Ĝ X
(1)

1,N X+1Ĝ X
(1)

N X+1,1

. (3.37)

Removing the boundary grid points and outermost internal grid points ofφ and the boundary
grid points ofθ , the linearized stability equation (3.3) may be rewritten as

s

[ N X−1∑
m=3

(
Ĝ X

(2)

i,2am + Ĝ X
(2)

i,m + Ĝ X
(2)

i,N Xbm

)
φm, j

+
NY−1∑
l=3

(
ĜY

(2)

j,2cl + ĜY
(2)

j,l + ĜY
(2)

j,NY dl

)
φi,l

]
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= Pr

[ N X−1∑
m=3

(
Ĝ X

(4)

i,2am + Ĝ X
(4)

i,m + Ĝ X
(4)

i,N Xbm

)
φm, j

+
NY−1∑
l=3

(
ĜY

(4)

j,2cl + ĜY
(4)

j,l + ĜY
(4)

j,NY dl

)
φi,l

+ 2
N X−1∑
m=3

NY−1∑
l=3

{(
Ĝ X

(2)

i,2ĜY
(2)

j,2cl + Ĝ X
(2)

i,2ĜY
(2)

j,l + Ĝ X
(2)

i,2ĜY
(2)

j,NY dl

)
am

+
(

ĜY
(2)

j,2Ĝ X
(2)

i,m

)
cl + Ĝ X

(2)

i,mĜY
(2)

j,l +
(

ĜY
(2)

j,NYĜ X
(2)

i,m

)
dl

+
(

Ĝ X
(2)

i,N XĜY
(2)

j,2cl + Ĝ X
(2)

i,N XĜY
(2)

j,l + Ĝ X
(2)

i,N XĜY
(2)

j,NY dl

)
bm

}
φm,l

]

− RPr
N X∑

m=2

(
Ĝ X

(1)

i,1aT
m + Ĝ X

(1)

i,m + Ĝ X
(1)

i,N X+1bT
m

)
θm, j

−PrHa2
NY−1∑
l=3

(
ĜY

(2)

j,2cl + ĜY
(2)

j,l + ĜY
(2)

j,NY dl

)
φi,l (3.38)

sθi j = −
(
∂TG

∂x

)
i, j

NY−1∑
l=3

(
ĜY

(1)

j,2cl + ĜY
(1)

j,l + ĜY
(1)

j,NYdl

)
φi,l

+
(
∂TG

∂y
− 1

2

)
i, j

N X−1∑
m=3

(
Ĝ X

(1)

i,2am + Ĝ X
(1)

i,m + Ĝ X
(1)

i,N Xbm

)
φm, j

+
N X∑

m=2

(
Ĝ X

(2)

i,1aT
m + Ĝ X

(2)

i,m + Ĝ X
(2)

i,N X+1bT
m

)
θm, j +

NY∑
l=2

ĜY
(2)

j,l θi,l . (3.39)

That is, the differential eigenvalue problem (3.3) is converted into the matrix eigenvalue
problem

α · x = sβ · x, (3.40)

where the eigenvectorx is defined as

x = (φ3,3, φ4,3, . . . , φN X−1,NY−1, θ2,2, θ3,2, . . . , θN X,NY)
T . (3.41)

The eigenvalues of (3.40) determines the linear stability of the basic state. The basic state
becomes unstable and convective flow sets in when the real part ofs becomes positive. The
critical Rayleigh number is defined as the smallest Rayleigh number when the largest real
part ofs is zero. For Rayleigh– B´enard convection, when the largest real part ofs is zero, the
corresponding imaginary part ofs is always zero; i.e., the exchange of stabilities is valid.
WhenHa = 0 andTG=0, i.e., for the case without a magnetic field or heat source, this is
confirmed by noting that the operatorA in (3.4) is self-adjoint. When there is a magnetic
field or a heat source, the validity of the exchange of stabilities is confirmed numerically.
Results are obtained for rectangular boxes havingdx/dy ratio (aspect ratio) in the range
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FIG. 2. Critical Rayleigh number versus the aspect ratio.

1–10 by solving the matrix eigenvalue problem (3.40) using a standard package such as
IMSL. We adopt a (30× 10) grid system for boxes with 1≤ dx/dy ≤ 3, a (40× 10) grid for
3≤ dx/dy ≤ 7, and a (50× 10) grid for 7≤ dx/dy ≤ 10 with double precision arithmetic.
The use of finer meshes does not change the results. Figure 2 shows the critical Rayleigh
number for the aspect ratio in the range 1–10. The result obtained by Reddy and Voy´e
[6] is presented in the figure for comparison. Both results show that the envelope of least
eigenvalues is a piecewise smooth curve, each smooth section of the curve corresponding
to a particular mode number, i.e., number of convection cells at onset of instability. The
mode number increases discretely as the aspect ratiodx/dy increases. The most dangerous
modes at certain aspect ratios are also plotted in the figure.

Next, we investigate the effect of the heat source on the critical Rayleigh number. Figure 3
presents the variation of the critical Rayleigh number versus the strength of a heat source
located at (0.25,−0.25) when the box aspect ratiodx/dy is 2. When the heat source is
located at this position, the increased strength of the heat source (positiveG) destabilizes
the system and, consequently, reduces the critical Rayleigh number. A negative value of
G denotes the presence of a heat sink at the same location. Figure 3 also shows that the
presence of a heat sink at this location (0.25,−0.25) stabilizes the system untilG becomes
approximately−6. Any further decrease ofG, i.e., increase in the strength of the heat sink,
destabilizes the system and decreases the critical Rayleigh number. The most dangerous
modes, i.e., the eigenfunction with zero eigenvalue at the critical Rayleigh number, for
several values ofG are also plotted in Fig. 3.

Figure 4 shows the effect of the location of a heat source of strengthG = 1.0 on the critical
Rayleigh number. The critical Rayleigh numbers are shown as contours for various locations
of the heat source. A heat source located in the lower half of the domain destabilizes the
fluid motion, while a heat source in the upper half of the domain stabilizes the system. At
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FIG. 3. Effect of the strength of heat source at (0.25,−0.25) on the critical Rayleigh number when the aspect
ratio is 2.

the same vertical location, the destabilizing effect of the heat source increases as its location
moves toward the sidewalls for the upper half domain, while the trend is reversed in the
lower half domain. In Figs. 5a–5d are shown the velocity and temperature eigenfunctions
at the critical Rayleigh number when a heat source of strengthG = 1.0 is located at (0.5,
0.5) and (−0.5, 0.5), respectively.

Figure 6 plots the effect of the Hartmann number on the critical Rayleigh number
for Boussinesq fluids with electric conductivity, such as liquid metals or semiconductor

FIG. 4. Effect of the location of heat source on the critical Rayleigh number(dx/dy = 2;G = 1).
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FIG. 5. The velocity and temperature eigenfunctions at the critical Rayleigh number when a heat source is
present: (a) velocity eigenfunction when(x†, y†) = (0.5, 0.5), (b) temperature eigenfunction when(x†, y†) =
(0.5, 0.5), (c) velocity eigenfunction when(x†, y†) = (−0.5, 0.5), and (d) temperature eigenfunction when
(x†, y†) = (−0.5, 0.5).

FIG. 6. Effect of magnetic field on the critical Rayleigh number.
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materials. It is shown that the critical Rayleigh number increases as the strength of the
magnetic field increases. It is also shown that as the Hartmann number increases, the mode
number (wavenumber) increases. The Hartmann number boundaries where the mode num-
ber changes are indicated by dashed lines, whendx/dy = 2.

4. NONLINEAR STABILITY ANALYSIS

The linear stability analysis gives the critical Rayleigh number, but does not predict
the magnitude of the convection cell. In this section we employ the power series method
[4, 10, 11] to obtain an explicit expression for the magnitude of convection cell near the
critical Rayleigh number. For brevity of analysis, we consider only the case withG = 0
andHa= 0. Extension of the present analysis to the cases of nonzeroG andHa is trivial.
Introducing a small perturbation parameterε, which indicates deviation from the critical
state, the variables may be expanded as power series ofε for a weak nonlinear state:

R = Rc + ε2R2+ · · · (4.1)

2 = ε21+ ε222+ ε323+ · · · (4.2)

9 = ε91+ ε292+ ε393+ · · · . (4.3)

The scaling for the time variablet is such that∂/∂t = ε2∂/∂τ . The termR1 in (4.1) is
eliminated a priori, since it becomes zero due to the symmetry when the solvability condi-
tion is imposed. When the disturbance variables defined as above are substituted into the
governing equation, we find the following sequence of equations:

O(ε)

Pr∇491− RcPr
∂21

∂x
= 0 (4.4)

∇221− 1

2

∂91

∂x
= 0 (4.5)

O(ε2)

Pr∇492− RcPr
∂22

∂x
= ∂∇291

∂x

∂91

∂y
− ∂∇

291

∂y

∂91

∂x
(4.6)

∇222− 1

2

∂92

∂x
= ∂21

∂x

∂91

∂y
− ∂21

∂y

∂91

∂x
(4.7)

O(ε3)

Pr∇493− RcPr
∂23

∂x
= ∂

∂τ
∇291+ ∂∇

291

∂x

∂92

∂y
+ ∂∇

292

∂x

∂91

∂y
− ∂∇

291

∂y

∂92

∂x

−∂∇
292

∂y

∂91

∂x
+R2Pr

∂21

∂x
(4.8)

∇223− 1

2

∂93

∂x
= ∂21

∂τ
+ ∂21

∂x

∂92

∂y
+ ∂22

∂x

∂91

∂y
− ∂21

∂y

∂92

∂x
− ∂22

∂y

∂91

∂x
. (4.9)
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The relevant boundary conditions are

x = ±1; 9i = 0,
∂9i

∂x
= 0,

∂2i

∂x
= 0 (i = 1, 2, 3) (4.10)

y = ±1; 9i = 0,
∂9i

∂y
= 0, 2i = 0 (i = 1, 2, 3). (4.11)

The perturbation equation for each orderi may be solved as follows.
(1) First order (ε). The first-order equations, Eqs. (4.4) and (4.5), with the relevant

boundary conditions are the same as those for the linear stability analysis, Eq. (3.3), with
s= 0. Therefore, Eqs. (4.4) and (4.5) may be discretized as

α · x(1) = 0. (4.12)

Hereα is the same matrix as defined in Eq. (3.40) andx(1) is defined as

x(1) =
(
9
(1)
3,3, 9

(1)
4,3, . . . , 9

(1)
N X−1,NY−1,2

(1)
2,2,2

(1)
3,2, . . . , 2

(1)
N X,NY

)T
. (4.13)

The solution of Eq. (4.12) is the eigenvectorx of the linear stability equation (Eq. (3.40))
with zero eigenvalue (s= 0). We may write the first-order solution as

x(1) = Cx, (4.14)

wherex is given by Eq. (3.41). Here the amplitudeC = C(τ ) is introduced since the
magnitude of an eigenvector is arbitrary. The amplitudeC is determined during the solution
process for the third-order equations.

(2) Second order (ε2). Since the differential operator defining the left-hand side of
the second-order equations, Eqs. (4.6) and (4.7), is the same as that for the linear stability
analysis, Eq. (3.4), withTG = 0 andHa = 0, we may write the discretized form of the
second-order equations as

α · x(2) = f(2). (4.15)

Hereα is the same matrix as defined in Eq. (3.40) andx(2) is given by

x(2) =
(
9
(2)
3,3, 9

(2)
4,3, . . . , 9

(2)
N X−1,NY−1,2

(2)
2,2,2

(2)
3,2, . . . , 2

(2)
N X,NY

)T
. (4.16)

The right-hand side of Eq. (4.15) is given by

f(2) =



(
∂∇291
∂x

∂91
∂y − ∂∇291

∂y
∂91
∂x

)
3,3

...(
∂∇291
∂x

∂91
∂y − ∂∇291

∂y
∂91
∂x

)
N X−1,NY−1(

∂21
∂x

∂91
∂y − ∂21

∂y
∂91
∂x

)
2,2

...(
∂21
∂x

∂91
∂y − ∂21

∂y
∂91
∂x

)
N X,NY


= C2



(
∂∇2φ

∂x
∂φ

∂y − ∂∇2φ

∂y
∂φ

∂x

)
3,3

...(
∂∇2φ

∂x
∂φ

∂y − ∂∇2φ

∂y
∂φ

∂x

)
N X−1,NY−1(

∂θ
∂x

∂φ

∂y − ∂θ
∂y

∂φ

∂x

)
2,2

...(
∂θ
∂x

∂φ

∂y − ∂θ
∂y

∂φ

∂x

)
N X,NY


.

(4.17)

Equation (4.15) can be easily solved to yieldx(2).
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(3) Third order (ε3). The differential operator for the left-hand side of the third-order
equations, Eqs. (4.8) and (4.9), is also identical to that for the linear stability analysis,
Eq. (3.4), withHa= 0 andTG= 0. Therefore, we may discretize the third-order equations
as

α · x(3) = ∂

∂τ
f (3) + R2Prg(3) + h(3), (4.18)

whereα is the same matrix as defined in Eq. (3.40), andx(3) is given by

x(3) =
(
9
(3)
3,3, 9

(3)
4,3, . . . , 9

(3)
N X−1,NY−1,2

(3)
2,2,2

(3)
3,2, . . . , 2

(3)
N X,NY

)T
. (4.19)

The vectorsf (3), g(3), andh(3) are defined as

f(3) =



(∇291)3,3
...

(∇291)N X−1,NY−1

(21)2,2
...

(21)N X,NY


= C



(∇2φ)3,3
...

(∇2φ)N X−1,NY−1

(θ)2,2
...

(θ)N X,NY


= CF(3) (4.20)

g(3) =



(
∂21
∂x

)
3,3

...(
∂21
∂x

)
N X−1,NY−1

0
0
...

0


= C



(
∂θ
∂x

)
3,3
...(

∂θ
∂x

)
N X−1,NY−1

0
0
...

0


= CG(3) (4.21)

h(3)=



(
∂∇291
∂x

∂92
∂y + ∂∇292

∂x
∂91
∂y − ∂∇291

∂y
∂92
∂x − ∂∇292

∂y
∂91
∂x

)
3,3

...(
∂∇291
∂x

∂92
∂y + ∂∇292

∂x
∂91
∂y − ∂∇291

∂y
∂92
∂x − ∂∇292

∂y
∂91
∂x

)
N X−1,NY−1(

∂21
∂x

∂92
∂y + ∂22

∂x
∂91
∂y − ∂21

∂y
∂92
∂x − ∂22

∂y
∂91
∂x

)
2,2

...(
∂21
∂x

∂92
∂y + ∂22

∂x
∂91
∂y − ∂21

∂y
∂92
∂x − ∂22

∂y
∂91
∂x

)
N X,NY


=C3H(3). (4.22)

Since the vectorh(3) consists of terms which are multiples of the first-order solution and
the second-order solution, it is proportional toC3.
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(4) Adjoint problem. The adjoint equation to the linear stability problem, Eq. (3.40), is
given by

(β−1 ·α)T · y = −sy, (4.23)

where the superscriptTdenotes the matrix transpose. The eigenvectory with zero eigenvalue
(s= 0) is the adjoint solution of the linear stability problem. Now we are in a position to
derive the Landau equation that describes the temporal variation of the amplitudeC of
the convection cell. Multiplying both sides of Eq. (4.18) byβ−1, whereβ is defined in

FIG. 7. Velocity components obtained by the nonlinear stability analysis and pseudospectral simulation when
dx/dy = 2 : (a)vx, (b) vy.
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Eq. (3.40), and taking inner product of the resulting equation with the adjoint vectory (cf.
Eq. (4.23)), we find〈

y, (β−1 ·α) · x(3)
〉 = ∂

∂τ

〈
y,β−1 · f (3)〉+ R2Pr

〈
y,β−1 · g(3)〉+ 〈y,β−1 · h(3)〉. (4.24)

Since the left-hand side of Eq. (4.24) is zero from the definition of the adjoint solution, we
find the following form of the Landau equation:

〈
y,β−1 · F(3)〉∂C

∂τ
+ R2PrC

〈
y,β−1 ·G(3)

〉+ C3
〈
y,β−1 · H(3)

〉 = 0. (4.25)

For the supercritical bifurcation, which is the case with the normal Rayleigh–B´enard
problem [2], we can find the steady amplitude of the convection cell from Eq. (4.25) as

εCs =
√
−(R− Rc)

〈
y,β−1 ·G(3)

〉〈
y,β−1 · H(3)

〉 , (4.26)

where Eq. (4.1) is invoked to replaceR2 in terms ofRandRc. From this, we can obtain the
velocity and temperature field at the steady state for a given Rayleigh number if Eqs. (4.2)
and (4.3) are exploited. Then, the Nusselt numberNu is given by

Nu= 1− 2

[
(εC)s

∂21

∂y
+ (εC)2s

∂22

∂y

]
y=−1

. (4.27)

To corroborate the results of the nonlinear stability analysis, we solve the Boussinesq
equation, Eqs. (2.20)–(2.22), using the Chebyshev pseudospectral method and compare the

FIG. 8. Intensity of convection versus the Rayleigh number: comparison of the nonlinear stability analysis
and the Chebyshev pseudospectral simulation whenPr= 0.72 anddx/dy = 2.
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results with those of the nonlinear stability analysis. Details of the Chebyshev pseudospectral
method as applied to the Boussinesq equation are given in Park and Chung [13]. Figures 7a
and 7b plot thex-component,vx (Fig. 7a), and they-component,vy (Fig. 7b), of the velocity
vector, as obtained by the nonlinear stability analysis and the Chebyshev pseudospectral
simulation, respectively, whenPr = 0.72, dx/dy = 2.0, the critical Rayleigh numberRc =
251.8, and the Rayleigh numberR= 300. Figure 8 shows the intensity of convection,
defined as the magnitude of the velocity integrated over the domain, versus the Rayleigh
number whendx/dy = 2.0. The solid line denotes the convection intensity obtained by
the nonlinear stability analysis, while that from the pseudospectral method is indicated by
small circles. It is shown that the nonlinear stability analysis predicts correct convection

FIG. 9. Comparison of the nonlinear stability analysis with the Chebyshev pseudospectral simulation when
dx/dy = 10, Rc = 216.2, andR= 250 : (a)vx, (b) vy.
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FIG. 10. Comparison of the Nusselt number whendx/dy = 10 andR= 250(Rc = 216.2).

intensity even when the Rayleigh numberR is over 1.5Rc. Figures 9 and 10 show the
comparison of velocity (Fig. 9) and Nusselt number (Fig. 10) obtained by the nonlinear
stability analysis and pseudospectral simulation, respectively, whenPr = 0.72, dx/dy =
10.0, andR= 250. The critical Rayleigh numberRc is 216.2 when the aspect ratiodx/dy

is 10.0. Figure 9a is forvx, Fig. 9b is forvy, and Fig. 10 is for the Nusselt number. Results
from both the nonlinear stability analysis and the pseudospectral simulation show that the
amplitude of convection cell diminishes near the sidewalls as a result of the nonslip boundary
condition.

5. CONCLUSION

A method for performing linear and nonlinear hydrodynamic stability analysis in finite
domains is developed. Specifically, in the present investigation, we consider a Rayleigh–
Bénard problem in a two-dimensional domain where a heat source or a magnetic field
that enhances or suppresses the convection may be present. By a judicious application of
the Chebyshev pseudospectral method, the incompressibility condition is imposed exactly
at the nonslip boundaries, avoiding the use of a penalty term that incurs numerical error.
The present technique allows us to derive a Landau equation that predicts the evolution
of the convection cell in a finite domain with respect to the Rayleigh number. The results
based on the nonlinear stability analysis are compared with those obtained from the exact
numerical solution of the Boussinesq equation, and both results are found to be in good
agreement with each other. The present technique is quite versatile and may be employed to
solve other hydrodynamic stability problems in finite domains. Although we consider two-
dimensional problems in the present investigation, there are several avenues for extending
the present technique to three-dimensional problems. If we assume the convection pattern
in the three-dimensional domain to be poloidal [1], the present technique can be employed
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without significant modification to solve the stability problem. Otherwise, we may employ
the vector potential formulation or the primitive variables to solve more general three-
dimensional hydrodynamic stability problems, both of which are methods currently being
pursued.
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